Metamath Proof Explorer


Theorem s2eqd

Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φA=N
s2eqd.2 φB=O
Assertion s2eqd φ⟨“AB”⟩=⟨“NO”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φA=N
2 s2eqd.2 φB=O
3 1 s1eqd φ⟨“A”⟩=⟨“N”⟩
4 2 s1eqd φ⟨“B”⟩=⟨“O”⟩
5 3 4 oveq12d φ⟨“A”⟩++⟨“B”⟩=⟨“N”⟩++⟨“O”⟩
6 df-s2 ⟨“AB”⟩=⟨“A”⟩++⟨“B”⟩
7 df-s2 ⟨“NO”⟩=⟨“N”⟩++⟨“O”⟩
8 5 6 7 3eqtr4g φ⟨“AB”⟩=⟨“NO”⟩