Metamath Proof Explorer


Theorem sb8v

Description: Substitution of variable in universal quantifier. Version of sb8f with a disjoint variable condition replacing the nonfree hypothesis F/ y ph , not requiring ax-12 . (Contributed by SN, 5-Dec-2024)

Ref Expression
Assertion sb8v xφyyxφ

Proof

Step Hyp Ref Expression
1 sb6 yxφxx=yφ
2 1 albii yyxφyxx=yφ
3 alcom yxx=yφxyx=yφ
4 equcom x=yy=x
5 4 imbi1i x=yφy=xφ
6 5 albii yx=yφyy=xφ
7 equsv yy=xφφ
8 6 7 bitri yx=yφφ
9 8 albii xyx=yφxφ
10 2 3 9 3bitrri xφyyxφ