Metamath Proof Explorer


Theorem sbaniota

Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion sbaniota ∃!xφxφψ[˙ιx|φ/x]˙ψ

Proof

Step Hyp Ref Expression
1 eupickbi ∃!xφxφψxφψ
2 sbiota1 ∃!xφxφψ[˙ιx|φ/x]˙ψ
3 1 2 bitrd ∃!xφxφψ[˙ιx|φ/x]˙ψ