Metamath Proof Explorer


Theorem sbc19.21g

Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004)

Ref Expression
Hypothesis sbcgf.1 xφ
Assertion sbc19.21g AV[˙A/x]˙φψφ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 sbcgf.1 xφ
2 sbcimg AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
3 1 sbcgf AV[˙A/x]˙φφ
4 3 imbi1d AV[˙A/x]˙φ[˙A/x]˙ψφ[˙A/x]˙ψ
5 2 4 bitrd AV[˙A/x]˙φψφ[˙A/x]˙ψ