Metamath Proof Explorer


Theorem sbc2rex

Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)

Ref Expression
Assertion sbc2rex [˙A/a]˙bBcCφbBcC[˙A/a]˙φ

Proof

Step Hyp Ref Expression
1 sbcrex [˙A/a]˙bBcCφbB[˙A/a]˙cCφ
2 sbcrex [˙A/a]˙cCφcC[˙A/a]˙φ
3 2 rexbii bB[˙A/a]˙cCφbBcC[˙A/a]˙φ
4 1 3 bitri [˙A/a]˙bBcCφbBcC[˙A/a]˙φ