Metamath Proof Explorer


Theorem sbc2rexgOLD

Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014) Obsolete as of 24-Aug-2018. Use csbov123 instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbc2rexgOLD A V [˙A / a]˙ b B c C φ b B c C [˙A / a]˙ φ

Proof

Step Hyp Ref Expression
1 elex A V A V
2 sbcrexgOLD A V [˙A / a]˙ b B c C φ b B [˙A / a]˙ c C φ
3 sbcrexgOLD A V [˙A / a]˙ c C φ c C [˙A / a]˙ φ
4 3 rexbidv A V b B [˙A / a]˙ c C φ b B c C [˙A / a]˙ φ
5 2 4 bitrd A V [˙A / a]˙ b B c C φ b B c C [˙A / a]˙ φ
6 1 5 syl A V [˙A / a]˙ b B c C φ b B c C [˙A / a]˙ φ