Metamath Proof Explorer


Theorem sbc4rex

Description: Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)

Ref Expression
Assertion sbc4rex [˙A / a]˙ b B c C d D e E φ b B c C d D e E [˙A / a]˙ φ

Proof

Step Hyp Ref Expression
1 sbc2rex [˙A / a]˙ b B c C d D e E φ b B c C [˙A / a]˙ d D e E φ
2 sbc2rex [˙A / a]˙ d D e E φ d D e E [˙A / a]˙ φ
3 2 2rexbii b B c C [˙A / a]˙ d D e E φ b B c C d D e E [˙A / a]˙ φ
4 1 3 bitri [˙A / a]˙ b B c C d D e E φ b B c C d D e E [˙A / a]˙ φ