Metamath Proof Explorer


Theorem sbc4rex

Description: Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)

Ref Expression
Assertion sbc4rex ( [ 𝐴 / 𝑎 ]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbc2rex ( [ 𝐴 / 𝑎 ]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶 [ 𝐴 / 𝑎 ]𝑑𝐷𝑒𝐸 𝜑 )
2 sbc2rex ( [ 𝐴 / 𝑎 ]𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 )
3 2 2rexbii ( ∃ 𝑏𝐵𝑐𝐶 [ 𝐴 / 𝑎 ]𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 )
4 1 3 bitri ( [ 𝐴 / 𝑎 ]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 )