Metamath Proof Explorer


Theorem sbc4rexgOLD

Description: Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014) Obsolete as of 24-Aug-2018. Use csbov123 instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbc4rexgOLD ( 𝐴𝑉 → ( [ 𝐴 / 𝑎 ]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 sbc2rexgOLD ( 𝐴 ∈ V → ( [ 𝐴 / 𝑎 ]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶 [ 𝐴 / 𝑎 ]𝑑𝐷𝑒𝐸 𝜑 ) )
3 sbc2rexgOLD ( 𝐴 ∈ V → ( [ 𝐴 / 𝑎 ]𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 ) )
4 3 2rexbidv ( 𝐴 ∈ V → ( ∃ 𝑏𝐵𝑐𝐶 [ 𝐴 / 𝑎 ]𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 ) )
5 2 4 bitrd ( 𝐴 ∈ V → ( [ 𝐴 / 𝑎 ]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 ) )
6 1 5 syl ( 𝐴𝑉 → ( [ 𝐴 / 𝑎 ]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃ 𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [ 𝐴 / 𝑎 ] 𝜑 ) )