Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcrot3 | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccom | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐴 / 𝑎 ] [ 𝐶 / 𝑐 ] 𝜑 ) | |
| 2 | sbccom | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) | |
| 3 | 2 | sbcbii | ⊢ ( [ 𝐵 / 𝑏 ] [ 𝐴 / 𝑎 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) |
| 4 | 1 3 | bitri | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) |