Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcrot3 | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccom | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐴 / 𝑎 ] [ 𝐶 / 𝑐 ] 𝜑 ) | |
2 | sbccom | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) | |
3 | 2 | sbcbii | ⊢ ( [ 𝐵 / 𝑏 ] [ 𝐴 / 𝑎 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) |
4 | 1 3 | bitri | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] 𝜑 ↔ [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] 𝜑 ) |