Metamath Proof Explorer


Theorem sbcrot3

Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion sbcrot3
|- ( [. A / a ]. [. B / b ]. [. C / c ]. ph <-> [. B / b ]. [. C / c ]. [. A / a ]. ph )

Proof

Step Hyp Ref Expression
1 sbccom
 |-  ( [. A / a ]. [. B / b ]. [. C / c ]. ph <-> [. B / b ]. [. A / a ]. [. C / c ]. ph )
2 sbccom
 |-  ( [. A / a ]. [. C / c ]. ph <-> [. C / c ]. [. A / a ]. ph )
3 2 sbcbii
 |-  ( [. B / b ]. [. A / a ]. [. C / c ]. ph <-> [. B / b ]. [. C / c ]. [. A / a ]. ph )
4 1 3 bitri
 |-  ( [. A / a ]. [. B / b ]. [. C / c ]. ph <-> [. B / b ]. [. C / c ]. [. A / a ]. ph )