Metamath Proof Explorer


Theorem sbcrot3

Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion sbcrot3 [˙A / a]˙ [˙B / b]˙ [˙C / c]˙ φ [˙B / b]˙ [˙C / c]˙ [˙A / a]˙ φ

Proof

Step Hyp Ref Expression
1 sbccom [˙A / a]˙ [˙B / b]˙ [˙C / c]˙ φ [˙B / b]˙ [˙A / a]˙ [˙C / c]˙ φ
2 sbccom [˙A / a]˙ [˙C / c]˙ φ [˙C / c]˙ [˙A / a]˙ φ
3 2 sbcbii [˙B / b]˙ [˙A / a]˙ [˙C / c]˙ φ [˙B / b]˙ [˙C / c]˙ [˙A / a]˙ φ
4 1 3 bitri [˙A / a]˙ [˙B / b]˙ [˙C / c]˙ φ [˙B / b]˙ [˙C / c]˙ [˙A / a]˙ φ