Metamath Proof Explorer


Theorem sbcrot3

Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion sbcrot3 [˙A/a]˙[˙B/b]˙[˙C/c]˙φ[˙B/b]˙[˙C/c]˙[˙A/a]˙φ

Proof

Step Hyp Ref Expression
1 sbccom [˙A/a]˙[˙B/b]˙[˙C/c]˙φ[˙B/b]˙[˙A/a]˙[˙C/c]˙φ
2 sbccom [˙A/a]˙[˙C/c]˙φ[˙C/c]˙[˙A/a]˙φ
3 2 sbcbii [˙B/b]˙[˙A/a]˙[˙C/c]˙φ[˙B/b]˙[˙C/c]˙[˙A/a]˙φ
4 1 3 bitri [˙A/a]˙[˙B/b]˙[˙C/c]˙φ[˙B/b]˙[˙C/c]˙[˙A/a]˙φ