Metamath Proof Explorer


Theorem sbcrot5

Description: Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion sbcrot5 [˙A/a]˙[˙B/b]˙[˙C/c]˙[˙D/d]˙[˙E/e]˙φ[˙B/b]˙[˙C/c]˙[˙D/d]˙[˙E/e]˙[˙A/a]˙φ

Proof

Step Hyp Ref Expression
1 sbcrot3 [˙A/a]˙[˙B/b]˙[˙C/c]˙[˙D/d]˙[˙E/e]˙φ[˙B/b]˙[˙C/c]˙[˙A/a]˙[˙D/d]˙[˙E/e]˙φ
2 sbcrot3 [˙A/a]˙[˙D/d]˙[˙E/e]˙φ[˙D/d]˙[˙E/e]˙[˙A/a]˙φ
3 2 sbcbii [˙C/c]˙[˙A/a]˙[˙D/d]˙[˙E/e]˙φ[˙C/c]˙[˙D/d]˙[˙E/e]˙[˙A/a]˙φ
4 3 sbcbii [˙B/b]˙[˙C/c]˙[˙A/a]˙[˙D/d]˙[˙E/e]˙φ[˙B/b]˙[˙C/c]˙[˙D/d]˙[˙E/e]˙[˙A/a]˙φ
5 1 4 bitri [˙A/a]˙[˙B/b]˙[˙C/c]˙[˙D/d]˙[˙E/e]˙φ[˙B/b]˙[˙C/c]˙[˙D/d]˙[˙E/e]˙[˙A/a]˙φ