Metamath Proof Explorer


Theorem sbcrot5

Description: Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion sbcrot5 ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] 𝜑[ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] [ 𝐴 / 𝑎 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbcrot3 ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] 𝜑[ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] 𝜑 )
2 sbcrot3 ( [ 𝐴 / 𝑎 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] 𝜑[ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] [ 𝐴 / 𝑎 ] 𝜑 )
3 2 sbcbii ( [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] 𝜑[ 𝐶 / 𝑐 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] [ 𝐴 / 𝑎 ] 𝜑 )
4 3 sbcbii ( [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐴 / 𝑎 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] 𝜑[ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] [ 𝐴 / 𝑎 ] 𝜑 )
5 1 4 bitri ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] 𝜑[ 𝐵 / 𝑏 ] [ 𝐶 / 𝑐 ] [ 𝐷 / 𝑑 ] [ 𝐸 / 𝑒 ] [ 𝐴 / 𝑎 ] 𝜑 )