Metamath Proof Explorer


Theorem sbccomieg

Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis sbccomieg.1 ( 𝑎 = 𝐴𝐵 = 𝐶 )
Assertion sbccomieg ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑[ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbccomieg.1 ( 𝑎 = 𝐴𝐵 = 𝐶 )
2 sbcex ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑𝐴 ∈ V )
3 spesbc ( [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 → ∃ 𝑏 [ 𝐴 / 𝑎 ] 𝜑 )
4 sbcex ( [ 𝐴 / 𝑎 ] 𝜑𝐴 ∈ V )
5 4 exlimiv ( ∃ 𝑏 [ 𝐴 / 𝑎 ] 𝜑𝐴 ∈ V )
6 3 5 syl ( [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑𝐴 ∈ V )
7 nfcv 𝑎 𝐶
8 nfsbc1v 𝑎 [ 𝐴 / 𝑎 ] 𝜑
9 7 8 nfsbcw 𝑎 [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑
10 sbceq1a ( 𝑎 = 𝐴 → ( 𝜑[ 𝐴 / 𝑎 ] 𝜑 ) )
11 1 10 sbceqbid ( 𝑎 = 𝐴 → ( [ 𝐵 / 𝑏 ] 𝜑[ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 ) )
12 9 11 sbciegf ( 𝐴 ∈ V → ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑[ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 ) )
13 2 6 12 pm5.21nii ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑[ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 )