| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbccomieg.1 |
⊢ ( 𝑎 = 𝐴 → 𝐵 = 𝐶 ) |
| 2 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 → 𝐴 ∈ V ) |
| 3 |
|
spesbc |
⊢ ( [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 → ∃ 𝑏 [ 𝐴 / 𝑎 ] 𝜑 ) |
| 4 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑎 ] 𝜑 → 𝐴 ∈ V ) |
| 5 |
4
|
exlimiv |
⊢ ( ∃ 𝑏 [ 𝐴 / 𝑎 ] 𝜑 → 𝐴 ∈ V ) |
| 6 |
3 5
|
syl |
⊢ ( [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 → 𝐴 ∈ V ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐶 |
| 8 |
|
nfsbc1v |
⊢ Ⅎ 𝑎 [ 𝐴 / 𝑎 ] 𝜑 |
| 9 |
7 8
|
nfsbcw |
⊢ Ⅎ 𝑎 [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 |
| 10 |
|
sbceq1a |
⊢ ( 𝑎 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑎 ] 𝜑 ) ) |
| 11 |
1 10
|
sbceqbid |
⊢ ( 𝑎 = 𝐴 → ( [ 𝐵 / 𝑏 ] 𝜑 ↔ [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 ) ) |
| 12 |
9 11
|
sbciegf |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ↔ [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 ) ) |
| 13 |
2 6 12
|
pm5.21nii |
⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ↔ [ 𝐶 / 𝑏 ] [ 𝐴 / 𝑎 ] 𝜑 ) |