| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbccomieg.1 |
|- ( a = A -> B = C ) |
| 2 |
|
sbcex |
|- ( [. A / a ]. [. B / b ]. ph -> A e. _V ) |
| 3 |
|
spesbc |
|- ( [. C / b ]. [. A / a ]. ph -> E. b [. A / a ]. ph ) |
| 4 |
|
sbcex |
|- ( [. A / a ]. ph -> A e. _V ) |
| 5 |
4
|
exlimiv |
|- ( E. b [. A / a ]. ph -> A e. _V ) |
| 6 |
3 5
|
syl |
|- ( [. C / b ]. [. A / a ]. ph -> A e. _V ) |
| 7 |
|
nfcv |
|- F/_ a C |
| 8 |
|
nfsbc1v |
|- F/ a [. A / a ]. ph |
| 9 |
7 8
|
nfsbcw |
|- F/ a [. C / b ]. [. A / a ]. ph |
| 10 |
|
sbceq1a |
|- ( a = A -> ( ph <-> [. A / a ]. ph ) ) |
| 11 |
1 10
|
sbceqbid |
|- ( a = A -> ( [. B / b ]. ph <-> [. C / b ]. [. A / a ]. ph ) ) |
| 12 |
9 11
|
sbciegf |
|- ( A e. _V -> ( [. A / a ]. [. B / b ]. ph <-> [. C / b ]. [. A / a ]. ph ) ) |
| 13 |
2 6 12
|
pm5.21nii |
|- ( [. A / a ]. [. B / b ]. ph <-> [. C / b ]. [. A / a ]. ph ) |