Metamath Proof Explorer


Theorem sbccomieg

Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis sbccomieg.1
|- ( a = A -> B = C )
Assertion sbccomieg
|- ( [. A / a ]. [. B / b ]. ph <-> [. C / b ]. [. A / a ]. ph )

Proof

Step Hyp Ref Expression
1 sbccomieg.1
 |-  ( a = A -> B = C )
2 sbcex
 |-  ( [. A / a ]. [. B / b ]. ph -> A e. _V )
3 spesbc
 |-  ( [. C / b ]. [. A / a ]. ph -> E. b [. A / a ]. ph )
4 sbcex
 |-  ( [. A / a ]. ph -> A e. _V )
5 4 exlimiv
 |-  ( E. b [. A / a ]. ph -> A e. _V )
6 3 5 syl
 |-  ( [. C / b ]. [. A / a ]. ph -> A e. _V )
7 nfcv
 |-  F/_ a C
8 nfsbc1v
 |-  F/ a [. A / a ]. ph
9 7 8 nfsbcw
 |-  F/ a [. C / b ]. [. A / a ]. ph
10 sbceq1a
 |-  ( a = A -> ( ph <-> [. A / a ]. ph ) )
11 1 10 sbceqbid
 |-  ( a = A -> ( [. B / b ]. ph <-> [. C / b ]. [. A / a ]. ph ) )
12 9 11 sbciegf
 |-  ( A e. _V -> ( [. A / a ]. [. B / b ]. ph <-> [. C / b ]. [. A / a ]. ph ) )
13 2 6 12 pm5.21nii
 |-  ( [. A / a ]. [. B / b ]. ph <-> [. C / b ]. [. A / a ]. ph )