Description: Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | sbc4rex | |- ( [. A / a ]. E. b e. B E. c e. C E. d e. D E. e e. E ph <-> E. b e. B E. c e. C E. d e. D E. e e. E [. A / a ]. ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2rex | |- ( [. A / a ]. E. b e. B E. c e. C E. d e. D E. e e. E ph <-> E. b e. B E. c e. C [. A / a ]. E. d e. D E. e e. E ph ) |
|
2 | sbc2rex | |- ( [. A / a ]. E. d e. D E. e e. E ph <-> E. d e. D E. e e. E [. A / a ]. ph ) |
|
3 | 2 | 2rexbii | |- ( E. b e. B E. c e. C [. A / a ]. E. d e. D E. e e. E ph <-> E. b e. B E. c e. C E. d e. D E. e e. E [. A / a ]. ph ) |
4 | 1 3 | bitri | |- ( [. A / a ]. E. b e. B E. c e. C E. d e. D E. e e. E ph <-> E. b e. B E. c e. C E. d e. D E. e e. E [. A / a ]. ph ) |