Metamath Proof Explorer


Theorem sbcrexgOLD

Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011) Obsolete as of 18-Aug-2018. Use sbcrex instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbcrexgOLD AV[˙A/x]˙yBφyB[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 dfsbcq2 z=AzxyBφ[˙A/x]˙yBφ
2 dfsbcq2 z=Azxφ[˙A/x]˙φ
3 2 rexbidv z=AyBzxφyB[˙A/x]˙φ
4 nfcv _xB
5 nfs1v xzxφ
6 4 5 nfrexw xyBzxφ
7 sbequ12 x=zφzxφ
8 7 rexbidv x=zyBφyBzxφ
9 6 8 sbie zxyBφyBzxφ
10 1 3 9 vtoclbg AV[˙A/x]˙yBφyB[˙A/x]˙φ