Metamath Proof Explorer


Theorem sbcrexgOLD

Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011) Obsolete as of 18-Aug-2018. Use sbcrex instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbcrexgOLD A V [˙A / x]˙ y B φ y B [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 dfsbcq2 z = A z x y B φ [˙A / x]˙ y B φ
2 dfsbcq2 z = A z x φ [˙A / x]˙ φ
3 2 rexbidv z = A y B z x φ y B [˙A / x]˙ φ
4 nfcv _ x B
5 nfs1v x z x φ
6 4 5 nfrex x y B z x φ
7 sbequ12 x = z φ z x φ
8 7 rexbidv x = z y B φ y B z x φ
9 6 8 sbie z x y B φ y B z x φ
10 1 3 9 vtoclbg A V [˙A / x]˙ y B φ y B [˙A / x]˙ φ