| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] E. y e. B ph <-> [. A / x ]. E. y e. B ph ) ) |
| 2 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) ) |
| 3 |
2
|
rexbidv |
|- ( z = A -> ( E. y e. B [ z / x ] ph <-> E. y e. B [. A / x ]. ph ) ) |
| 4 |
|
nfcv |
|- F/_ x B |
| 5 |
|
nfs1v |
|- F/ x [ z / x ] ph |
| 6 |
4 5
|
nfrexw |
|- F/ x E. y e. B [ z / x ] ph |
| 7 |
|
sbequ12 |
|- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
| 8 |
7
|
rexbidv |
|- ( x = z -> ( E. y e. B ph <-> E. y e. B [ z / x ] ph ) ) |
| 9 |
6 8
|
sbie |
|- ( [ z / x ] E. y e. B ph <-> E. y e. B [ z / x ] ph ) |
| 10 |
1 3 9
|
vtoclbg |
|- ( A e. V -> ( [. A / x ]. E. y e. B ph <-> E. y e. B [. A / x ]. ph ) ) |