Metamath Proof Explorer


Theorem sbcrexgOLD

Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011) Obsolete as of 18-Aug-2018. Use sbcrex instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbcrexgOLD ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 dfsbcq2 ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] ∃ 𝑦𝐵 𝜑[ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ) )
2 dfsbcq2 ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
3 2 rexbidv ( 𝑧 = 𝐴 → ( ∃ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∃ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )
4 nfcv 𝑥 𝐵
5 nfs1v 𝑥 [ 𝑧 / 𝑥 ] 𝜑
6 4 5 nfrex 𝑥𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑
7 sbequ12 ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) )
8 7 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) )
9 6 8 sbie ( [ 𝑧 / 𝑥 ] ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 )
10 1 3 9 vtoclbg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )