Step |
Hyp |
Ref |
Expression |
1 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
2 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
3 |
2
|
rexbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
5 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
6 |
4 5
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 |
7 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
9 |
6 8
|
sbie |
⊢ ( [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
10 |
1 3 9
|
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |