Metamath Proof Explorer


Theorem 2sbcrexOLD

Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) Obsolete as of 24-Aug-2018. Use csbov123 instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses 2sbcrex.1 𝐴 ∈ V
2sbcrex.2 𝐵 ∈ V
Assertion 2sbcrexOLD ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ]𝑐𝐶 𝜑 ↔ ∃ 𝑐𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 2sbcrex.1 𝐴 ∈ V
2 2sbcrex.2 𝐵 ∈ V
3 sbcrexgOLD ( 𝐵 ∈ V → ( [ 𝐵 / 𝑏 ]𝑐𝐶 𝜑 ↔ ∃ 𝑐𝐶 [ 𝐵 / 𝑏 ] 𝜑 ) )
4 2 3 ax-mp ( [ 𝐵 / 𝑏 ]𝑐𝐶 𝜑 ↔ ∃ 𝑐𝐶 [ 𝐵 / 𝑏 ] 𝜑 )
5 4 sbcbii ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ]𝑐𝐶 𝜑[ 𝐴 / 𝑎 ]𝑐𝐶 [ 𝐵 / 𝑏 ] 𝜑 )
6 sbcrexgOLD ( 𝐴 ∈ V → ( [ 𝐴 / 𝑎 ]𝑐𝐶 [ 𝐵 / 𝑏 ] 𝜑 ↔ ∃ 𝑐𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ) )
7 1 6 ax-mp ( [ 𝐴 / 𝑎 ]𝑐𝐶 [ 𝐵 / 𝑏 ] 𝜑 ↔ ∃ 𝑐𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 )
8 5 7 bitri ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ]𝑐𝐶 𝜑 ↔ ∃ 𝑐𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 )