Step |
Hyp |
Ref |
Expression |
1 |
|
2sbcrex.1 |
⊢ 𝐴 ∈ V |
2 |
|
2sbcrex.2 |
⊢ 𝐵 ∈ V |
3 |
|
sbcrexgOLD |
⊢ ( 𝐵 ∈ V → ( [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ) ) |
4 |
2 3
|
ax-mp |
⊢ ( [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ) |
5 |
4
|
sbcbii |
⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ [ 𝐴 / 𝑎 ] ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ) |
6 |
|
sbcrexgOLD |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑎 ] ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ) ) |
7 |
1 6
|
ax-mp |
⊢ ( [ 𝐴 / 𝑎 ] ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ) |
8 |
5 7
|
bitri |
⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ) |