Metamath Proof Explorer


Theorem 2sbcrexOLD

Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) Obsolete as of 24-Aug-2018. Use csbov123 instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses 2sbcrex.1
|- A e. _V
2sbcrex.2
|- B e. _V
Assertion 2sbcrexOLD
|- ( [. A / a ]. [. B / b ]. E. c e. C ph <-> E. c e. C [. A / a ]. [. B / b ]. ph )

Proof

Step Hyp Ref Expression
1 2sbcrex.1
 |-  A e. _V
2 2sbcrex.2
 |-  B e. _V
3 sbcrexgOLD
 |-  ( B e. _V -> ( [. B / b ]. E. c e. C ph <-> E. c e. C [. B / b ]. ph ) )
4 2 3 ax-mp
 |-  ( [. B / b ]. E. c e. C ph <-> E. c e. C [. B / b ]. ph )
5 4 sbcbii
 |-  ( [. A / a ]. [. B / b ]. E. c e. C ph <-> [. A / a ]. E. c e. C [. B / b ]. ph )
6 sbcrexgOLD
 |-  ( A e. _V -> ( [. A / a ]. E. c e. C [. B / b ]. ph <-> E. c e. C [. A / a ]. [. B / b ]. ph ) )
7 1 6 ax-mp
 |-  ( [. A / a ]. E. c e. C [. B / b ]. ph <-> E. c e. C [. A / a ]. [. B / b ]. ph )
8 5 7 bitri
 |-  ( [. A / a ]. [. B / b ]. E. c e. C ph <-> E. c e. C [. A / a ]. [. B / b ]. ph )