| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( y = A -> [_ y / x ]_ ( B F C ) = [_ A / x ]_ ( B F C ) )  | 
						
						
							| 2 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( y = A -> [_ y / x ]_ F = [_ A / x ]_ F )  | 
						
						
							| 3 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B )  | 
						
						
							| 4 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							oveq123d | 
							 |-  ( y = A -> ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							eqeq12d | 
							 |-  ( y = A -> ( [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) <-> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ x [_ y / x ]_ B  | 
						
						
							| 9 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ x [_ y / x ]_ F  | 
						
						
							| 10 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ x [_ y / x ]_ C  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							nfov | 
							 |-  F/_ x ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C )  | 
						
						
							| 12 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( x = y -> F = [_ y / x ]_ F )  | 
						
						
							| 13 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( x = y -> B = [_ y / x ]_ B )  | 
						
						
							| 14 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( x = y -> C = [_ y / x ]_ C )  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							oveq123d | 
							 |-  ( x = y -> ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) )  | 
						
						
							| 16 | 
							
								7 11 15
							 | 
							csbief | 
							 |-  [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C )  | 
						
						
							| 17 | 
							
								6 16
							 | 
							vtoclg | 
							 |-  ( A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) )  | 
						
						
							| 18 | 
							
								
							 | 
							csbprc | 
							 |-  ( -. A e. _V -> [_ A / x ]_ ( B F C ) = (/) )  | 
						
						
							| 19 | 
							
								
							 | 
							df-ov | 
							 |-  ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. )  | 
						
						
							| 20 | 
							
								
							 | 
							csbprc | 
							 |-  ( -. A e. _V -> [_ A / x ]_ F = (/) )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq1d | 
							 |-  ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) )  | 
						
						
							| 22 | 
							
								
							 | 
							0fv | 
							 |-  ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/)  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqtrdi | 
							 |-  ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/) )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							eqtr2id | 
							 |-  ( -. A e. _V -> (/) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) )  | 
						
						
							| 25 | 
							
								18 24
							 | 
							eqtrd | 
							 |-  ( -. A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) )  | 
						
						
							| 26 | 
							
								17 25
							 | 
							pm2.61i | 
							 |-  [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C )  |