Step |
Hyp |
Ref |
Expression |
1 |
|
csbov123 |
|- [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) |
2 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ B = B ) |
3 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ C = C ) |
4 |
2 3
|
oveq12d |
|- ( A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( B [_ A / x ]_ F C ) ) |
5 |
|
0fv |
|- ( (/) ` <. B , C >. ) = (/) |
6 |
|
df-ov |
|- ( B (/) C ) = ( (/) ` <. B , C >. ) |
7 |
|
0ov |
|- ( [_ A / x ]_ B (/) [_ A / x ]_ C ) = (/) |
8 |
5 6 7
|
3eqtr4ri |
|- ( [_ A / x ]_ B (/) [_ A / x ]_ C ) = ( B (/) C ) |
9 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ F = (/) ) |
10 |
9
|
oveqd |
|- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( [_ A / x ]_ B (/) [_ A / x ]_ C ) ) |
11 |
9
|
oveqd |
|- ( -. A e. _V -> ( B [_ A / x ]_ F C ) = ( B (/) C ) ) |
12 |
8 10 11
|
3eqtr4a |
|- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( B [_ A / x ]_ F C ) ) |
13 |
4 12
|
pm2.61i |
|- ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( B [_ A / x ]_ F C ) |
14 |
1 13
|
eqtri |
|- [_ A / x ]_ ( B F C ) = ( B [_ A / x ]_ F C ) |