Metamath Proof Explorer


Theorem sbcal

Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcal [˙A/y]˙xφx[˙A/y]˙φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A/y]˙xφAV
2 sbcex [˙A/y]˙φAV
3 2 sps x[˙A/y]˙φAV
4 dfsbcq2 z=Azyxφ[˙A/y]˙xφ
5 dfsbcq2 z=Azyφ[˙A/y]˙φ
6 5 albidv z=Axzyφx[˙A/y]˙φ
7 sbal zyxφxzyφ
8 4 6 7 vtoclbg AV[˙A/y]˙xφx[˙A/y]˙φ
9 1 3 8 pm5.21nii [˙A/y]˙xφx[˙A/y]˙φ