Metamath Proof Explorer


Theorem sbcani

Description: Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcani.1 [˙A / x]˙ φ χ
sbcani.2 [˙A / x]˙ ψ η
Assertion sbcani [˙A / x]˙ φ ψ χ η

Proof

Step Hyp Ref Expression
1 sbcani.1 [˙A / x]˙ φ χ
2 sbcani.2 [˙A / x]˙ ψ η
3 sbcan [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ
4 1 2 anbi12i [˙A / x]˙ φ [˙A / x]˙ ψ χ η
5 3 4 bitri [˙A / x]˙ φ ψ χ η