Metamath Proof Explorer


Theorem sbcani

Description: Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcani.1 [˙A/x]˙φχ
sbcani.2 [˙A/x]˙ψη
Assertion sbcani [˙A/x]˙φψχη

Proof

Step Hyp Ref Expression
1 sbcani.1 [˙A/x]˙φχ
2 sbcani.2 [˙A/x]˙ψη
3 sbcan [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
4 1 2 anbi12i [˙A/x]˙φ[˙A/x]˙ψχη
5 3 4 bitri [˙A/x]˙φψχη