Metamath Proof Explorer


Theorem sbcbi

Description: Implication form of sbcbii . sbcbi is sbcbiVD without virtual deductions and was automatically derived from sbcbiVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcbi AVxφψ[˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 spsbc AVxφψ[˙A/x]˙φψ
2 sbcbig AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
3 1 2 sylibd AVxφψ[˙A/x]˙φ[˙A/x]˙ψ