Metamath Proof Explorer


Theorem sbcbi

Description: Implication form of sbcbii . sbcbi is sbcbiVD without virtual deductions and was automatically derived from sbcbiVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcbi
|- ( A e. V -> ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) )

Proof

Step Hyp Ref Expression
1 spsbc
 |-  ( A e. V -> ( A. x ( ph <-> ps ) -> [. A / x ]. ( ph <-> ps ) ) )
2 sbcbig
 |-  ( A e. V -> ( [. A / x ]. ( ph <-> ps ) <-> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) )
3 1 2 sylibd
 |-  ( A e. V -> ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) )