Description: Implication form of sbcbii . sbcbi is sbcbiVD without virtual deductions and was automatically derived from sbcbiVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcbi | |- ( A e. V -> ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbc | |- ( A e. V -> ( A. x ( ph <-> ps ) -> [. A / x ]. ( ph <-> ps ) ) ) |
|
| 2 | sbcbig | |- ( A e. V -> ( [. A / x ]. ( ph <-> ps ) <-> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) ) |
|
| 3 | 1 2 | sylibd | |- ( A e. V -> ( A. x ( ph <-> ps ) -> ( [. A / x ]. ph <-> [. A / x ]. ps ) ) ) |