Metamath Proof Explorer


Theorem sbcbr12g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr12g AV[˙A/x]˙BRCA/xBRA/xC

Proof

Step Hyp Ref Expression
1 sbcbr123 [˙A/x]˙BRCA/xBA/xRA/xC
2 csbconstg AVA/xR=R
3 2 breqd AVA/xBA/xRA/xCA/xBRA/xC
4 1 3 bitrid AV[˙A/x]˙BRCA/xBRA/xC