Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
sbcbr12g
Next ⟩
sbcbr1g
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbcbr12g
Description:
Move substitution in and out of a binary relation.
(Contributed by
NM
, 13-Dec-2005)
Ref
Expression
Assertion
sbcbr12g
⊢
A
∈
V
→
[
˙
A
/
x
]
˙
B
R
C
↔
⦋
A
/
x
⦌
B
R
⦋
A
/
x
⦌
C
Proof
Step
Hyp
Ref
Expression
1
sbcbr123
⊢
[
˙
A
/
x
]
˙
B
R
C
↔
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
2
csbconstg
⊢
A
∈
V
→
⦋
A
/
x
⦌
R
=
R
3
2
breqd
⊢
A
∈
V
→
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
↔
⦋
A
/
x
⦌
B
R
⦋
A
/
x
⦌
C
4
1
3
bitrid
⊢
A
∈
V
→
[
˙
A
/
x
]
˙
B
R
C
↔
⦋
A
/
x
⦌
B
R
⦋
A
/
x
⦌
C