Metamath Proof Explorer


Theorem sbcco3gw

Description: Composition of two substitutions. Version of sbcco3g with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Nov-2005) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypothesis sbcco3gw.1 x=AB=C
Assertion sbcco3gw AV[˙A/x]˙[˙B/y]˙φ[˙C/y]˙φ

Proof

Step Hyp Ref Expression
1 sbcco3gw.1 x=AB=C
2 sbcnestgw AV[˙A/x]˙[˙B/y]˙φ[˙A/xB/y]˙φ
3 elex AVAV
4 nfcvd AV_xC
5 4 1 csbiegf AVA/xB=C
6 dfsbcq A/xB=C[˙A/xB/y]˙φ[˙C/y]˙φ
7 3 5 6 3syl AV[˙A/xB/y]˙φ[˙C/y]˙φ
8 2 7 bitrd AV[˙A/x]˙[˙B/y]˙φ[˙C/y]˙φ