Metamath Proof Explorer


Theorem sbccomlem

Description: Lemma for sbccom . (Contributed by NM, 14-Nov-2005) (Revised by Mario Carneiro, 18-Oct-2016)

Ref Expression
Assertion sbccomlem [˙A/x]˙[˙B/y]˙φ[˙B/y]˙[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 excom xyx=Ay=Bφyxx=Ay=Bφ
2 exdistr xyx=Ay=Bφxx=Ayy=Bφ
3 an12 x=Ay=Bφy=Bx=Aφ
4 3 exbii xx=Ay=Bφxy=Bx=Aφ
5 19.42v xy=Bx=Aφy=Bxx=Aφ
6 4 5 bitri xx=Ay=Bφy=Bxx=Aφ
7 6 exbii yxx=Ay=Bφyy=Bxx=Aφ
8 1 2 7 3bitr3i xx=Ayy=Bφyy=Bxx=Aφ
9 sbc5 [˙A/x]˙yy=Bφxx=Ayy=Bφ
10 sbc5 [˙B/y]˙xx=Aφyy=Bxx=Aφ
11 8 9 10 3bitr4i [˙A/x]˙yy=Bφ[˙B/y]˙xx=Aφ
12 sbc5 [˙B/y]˙φyy=Bφ
13 12 sbcbii [˙A/x]˙[˙B/y]˙φ[˙A/x]˙yy=Bφ
14 sbc5 [˙A/x]˙φxx=Aφ
15 14 sbcbii [˙B/y]˙[˙A/x]˙φ[˙B/y]˙xx=Aφ
16 11 13 15 3bitr4i [˙A/x]˙[˙B/y]˙φ[˙B/y]˙[˙A/x]˙φ