Metamath Proof Explorer


Theorem sbceqi

Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbceqi.1 AV
sbceqi.2 A/xB=D
sbceqi.3 A/xC=E
Assertion sbceqi [˙A/x]˙B=CD=E

Proof

Step Hyp Ref Expression
1 sbceqi.1 AV
2 sbceqi.2 A/xB=D
3 sbceqi.3 A/xC=E
4 sbceqg AV[˙A/x]˙B=CA/xB=A/xC
5 1 4 ax-mp [˙A/x]˙B=CA/xB=A/xC
6 2 3 eqeq12i A/xB=A/xCD=E
7 5 6 bitri [˙A/x]˙B=CD=E