Metamath Proof Explorer


Theorem sbciedOLD

Description: Obsolete version of sbcied as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbciedOLD.1 φAV
sbciedOLD.2 φx=Aψχ
Assertion sbciedOLD φ[˙A/x]˙ψχ

Proof

Step Hyp Ref Expression
1 sbciedOLD.1 φAV
2 sbciedOLD.2 φx=Aψχ
3 nfv xφ
4 nfvd φxχ
5 1 2 3 4 sbciedf φ[˙A/x]˙ψχ