Metamath Proof Explorer


Theorem sbciegf

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses sbciegf.1 xψ
sbciegf.2 x=Aφψ
Assertion sbciegf AV[˙A/x]˙φψ

Proof

Step Hyp Ref Expression
1 sbciegf.1 xψ
2 sbciegf.2 x=Aφψ
3 2 ax-gen xx=Aφψ
4 sbciegft AVxψxx=Aφψ[˙A/x]˙φψ
5 1 3 4 mp3an23 AV[˙A/x]˙φψ