Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Proper substitution of classes for sets sbciegf  
				
		 
		
			
		 
		Description:   Conversion of implicit substitution to explicit class substitution.
       (Contributed by NM , 14-Dec-2005)   (Revised by Mario Carneiro , 13-Oct-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						sbciegf.1   ⊢   Ⅎ  x   ψ        
					 
					
						sbciegf.2    ⊢   x  =  A    →    φ   ↔   ψ         
					 
				
					Assertion 
					sbciegf    ⊢   A  ∈  V    →   [ ˙ A  /  x ] ˙  φ  ↔   ψ         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							sbciegf.1  ⊢   Ⅎ  x   ψ        
						
							2 
								
							 
							sbciegf.2   ⊢   x  =  A    →    φ   ↔   ψ         
						
							3 
								2 
							 
							ax-gen  ⊢   ∀  x    x  =  A    →    φ   ↔   ψ          
						
							4 
								
							 
							sbciegft   ⊢    A  ∈  V    ∧   Ⅎ  x   ψ     ∧   ∀  x    x  =  A    →    φ   ↔   ψ        →   [ ˙ A  /  x ] ˙  φ  ↔   ψ         
						
							5 
								1  3  4 
							 
							mp3an23   ⊢   A  ∈  V    →   [ ˙ A  /  x ] ˙  φ  ↔   ψ