Metamath Proof Explorer


Theorem sbcni

Description: Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcni.1 AV
sbcni.2 [˙A/x]˙φψ
Assertion sbcni [˙A/x]˙¬φ¬ψ

Proof

Step Hyp Ref Expression
1 sbcni.1 AV
2 sbcni.2 [˙A/x]˙φψ
3 sbcng AV[˙A/x]˙¬φ¬[˙A/x]˙φ
4 1 3 ax-mp [˙A/x]˙¬φ¬[˙A/x]˙φ
5 4 2 xchbinx [˙A/x]˙¬φ¬ψ