Metamath Proof Explorer


Theorem sbcni

Description: Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcni.1
|- A e. _V
sbcni.2
|- ( [. A / x ]. ph <-> ps )
Assertion sbcni
|- ( [. A / x ]. -. ph <-> -. ps )

Proof

Step Hyp Ref Expression
1 sbcni.1
 |-  A e. _V
2 sbcni.2
 |-  ( [. A / x ]. ph <-> ps )
3 sbcng
 |-  ( A e. _V -> ( [. A / x ]. -. ph <-> -. [. A / x ]. ph ) )
4 1 3 ax-mp
 |-  ( [. A / x ]. -. ph <-> -. [. A / x ]. ph )
5 4 2 xchbinx
 |-  ( [. A / x ]. -. ph <-> -. ps )