Metamath Proof Explorer
Description: Move class substitution inside a negation, in inference form.
(Contributed by Giovanni Mascellani, 27-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
sbcni.1 |
⊢ 𝐴 ∈ V |
|
|
sbcni.2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
|
Assertion |
sbcni |
⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcni.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sbcni.2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 3 |
|
sbcng |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 5 |
4 2
|
xchbinx |
⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜓 ) |