Metamath Proof Explorer


Theorem sbcni

Description: Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcni.1 𝐴 ∈ V
sbcni.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
Assertion sbcni ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 sbcni.1 𝐴 ∈ V
2 sbcni.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
3 sbcng ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) )
4 1 3 ax-mp ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 )
5 4 2 xchbinx ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜓 )