Metamath Proof Explorer


Theorem sbali

Description: Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypothesis sbali.1 𝐴 ∈ V
Assertion sbali ( [ 𝐴 / 𝑥 ]𝑥 𝜑 ↔ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 sbali.1 𝐴 ∈ V
2 nfa1 𝑥𝑥 𝜑
3 1 2 sbcgfi ( [ 𝐴 / 𝑥 ]𝑥 𝜑 ↔ ∀ 𝑥 𝜑 )