Metamath Proof Explorer


Theorem sbcgfi

Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbcgfi.1 𝐴 ∈ V
sbcgfi.2 𝑥 𝜑
Assertion sbcgfi ( [ 𝐴 / 𝑥 ] 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 sbcgfi.1 𝐴 ∈ V
2 sbcgfi.2 𝑥 𝜑
3 2 sbcgf ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑𝜑 ) )
4 1 3 ax-mp ( [ 𝐴 / 𝑥 ] 𝜑𝜑 )