Metamath Proof Explorer
Description: Substitution for a variable not free in a wff does not affect it, in
inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
sbcgfi.1 |
⊢ 𝐴 ∈ V |
|
|
sbcgfi.2 |
⊢ Ⅎ 𝑥 𝜑 |
|
Assertion |
sbcgfi |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sbcgfi.1 |
⊢ 𝐴 ∈ V |
2 |
|
sbcgfi.2 |
⊢ Ⅎ 𝑥 𝜑 |
3 |
2
|
sbcgf |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) |