Metamath Proof Explorer


Theorem sbcgfi

Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbcgfi.1 AV
sbcgfi.2 xφ
Assertion sbcgfi [˙A/x]˙φφ

Proof

Step Hyp Ref Expression
1 sbcgfi.1 AV
2 sbcgfi.2 xφ
3 2 sbcgf AV[˙A/x]˙φφ
4 1 3 ax-mp [˙A/x]˙φφ