Metamath Proof Explorer


Theorem sbcgfi

Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbcgfi.1 A V
sbcgfi.2 x φ
Assertion sbcgfi [˙A / x]˙ φ φ

Proof

Step Hyp Ref Expression
1 sbcgfi.1 A V
2 sbcgfi.2 x φ
3 2 sbcgf A V [˙A / x]˙ φ φ
4 1 3 ax-mp [˙A / x]˙ φ φ