Metamath Proof Explorer


Theorem sbexi

Description: Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypothesis sbexi.1 𝐴 ∈ V
Assertion sbexi ( [ 𝐴 / 𝑥 ]𝑥 𝜑 ↔ ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 sbexi.1 𝐴 ∈ V
2 nfe1 𝑥𝑥 𝜑
3 1 2 sbcgfi ( [ 𝐴 / 𝑥 ]𝑥 𝜑 ↔ ∃ 𝑥 𝜑 )