Metamath Proof Explorer


Theorem sbexi

Description: Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypothesis sbexi.1
|- A e. _V
Assertion sbexi
|- ( [. A / x ]. E. x ph <-> E. x ph )

Proof

Step Hyp Ref Expression
1 sbexi.1
 |-  A e. _V
2 nfe1
 |-  F/ x E. x ph
3 1 2 sbcgfi
 |-  ( [. A / x ]. E. x ph <-> E. x ph )