| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcalf.1 |  |-  F/_ y A | 
						
							| 2 |  | sb8v |  |-  ( A. y ph <-> A. z [ z / y ] ph ) | 
						
							| 3 | 2 | sbcbii |  |-  ( [. A / x ]. A. y ph <-> [. A / x ]. A. z [ z / y ] ph ) | 
						
							| 4 |  | sbcal |  |-  ( [. A / x ]. A. z [ z / y ] ph <-> A. z [. A / x ]. [ z / y ] ph ) | 
						
							| 5 |  | nfs1v |  |-  F/ y [ z / y ] ph | 
						
							| 6 | 1 5 | nfsbcw |  |-  F/ y [. A / x ]. [ z / y ] ph | 
						
							| 7 |  | nfv |  |-  F/ z [. A / x ]. ph | 
						
							| 8 |  | sbequ12r |  |-  ( z = y -> ( [ z / y ] ph <-> ph ) ) | 
						
							| 9 | 8 | sbcbidv |  |-  ( z = y -> ( [. A / x ]. [ z / y ] ph <-> [. A / x ]. ph ) ) | 
						
							| 10 | 6 7 9 | cbvalv1 |  |-  ( A. z [. A / x ]. [ z / y ] ph <-> A. y [. A / x ]. ph ) | 
						
							| 11 | 3 4 10 | 3bitri |  |-  ( [. A / x ]. A. y ph <-> A. y [. A / x ]. ph ) |