| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcalf.1 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 2 |  | sb8v | ⊢ ( ∀ 𝑦 𝜑  ↔  ∀ 𝑧 [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 3 | 2 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] ∀ 𝑦 𝜑  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑧 [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 4 |  | sbcal | ⊢ ( [ 𝐴  /  𝑥 ] ∀ 𝑧 [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑧 [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 5 |  | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 6 | 1 5 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑧 [ 𝐴  /  𝑥 ] 𝜑 | 
						
							| 8 |  | sbequ12r | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑦 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 9 | 8 | sbcbidv | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 10 | 6 7 9 | cbvalv1 | ⊢ ( ∀ 𝑧 [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 11 | 3 4 10 | 3bitri | ⊢ ( [ 𝐴  /  𝑥 ] ∀ 𝑦 𝜑  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) |