Step |
Hyp |
Ref |
Expression |
1 |
|
sbcexf.1 |
|- F/_ y A |
2 |
|
nfv |
|- F/ z ph |
3 |
2
|
sb8ev |
|- ( E. y ph <-> E. z [ z / y ] ph ) |
4 |
3
|
sbcbii |
|- ( [. A / x ]. E. y ph <-> [. A / x ]. E. z [ z / y ] ph ) |
5 |
|
sbcex2 |
|- ( [. A / x ]. E. z [ z / y ] ph <-> E. z [. A / x ]. [ z / y ] ph ) |
6 |
|
nfs1v |
|- F/ y [ z / y ] ph |
7 |
1 6
|
nfsbcw |
|- F/ y [. A / x ]. [ z / y ] ph |
8 |
|
nfv |
|- F/ z [. A / x ]. ph |
9 |
|
sbequ12r |
|- ( z = y -> ( [ z / y ] ph <-> ph ) ) |
10 |
9
|
sbcbidv |
|- ( z = y -> ( [. A / x ]. [ z / y ] ph <-> [. A / x ]. ph ) ) |
11 |
7 8 10
|
cbvexv1 |
|- ( E. z [. A / x ]. [ z / y ] ph <-> E. y [. A / x ]. ph ) |
12 |
4 5 11
|
3bitri |
|- ( [. A / x ]. E. y ph <-> E. y [. A / x ]. ph ) |