| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcexf.1 |  |-  F/_ y A | 
						
							| 2 |  | nfv |  |-  F/ z ph | 
						
							| 3 | 2 | sb8ef |  |-  ( E. y ph <-> E. z [ z / y ] ph ) | 
						
							| 4 | 3 | sbcbii |  |-  ( [. A / x ]. E. y ph <-> [. A / x ]. E. z [ z / y ] ph ) | 
						
							| 5 |  | sbcex2 |  |-  ( [. A / x ]. E. z [ z / y ] ph <-> E. z [. A / x ]. [ z / y ] ph ) | 
						
							| 6 |  | nfs1v |  |-  F/ y [ z / y ] ph | 
						
							| 7 | 1 6 | nfsbcw |  |-  F/ y [. A / x ]. [ z / y ] ph | 
						
							| 8 |  | nfv |  |-  F/ z [. A / x ]. ph | 
						
							| 9 |  | sbequ12r |  |-  ( z = y -> ( [ z / y ] ph <-> ph ) ) | 
						
							| 10 | 9 | sbcbidv |  |-  ( z = y -> ( [. A / x ]. [ z / y ] ph <-> [. A / x ]. ph ) ) | 
						
							| 11 | 7 8 10 | cbvexv1 |  |-  ( E. z [. A / x ]. [ z / y ] ph <-> E. y [. A / x ]. ph ) | 
						
							| 12 | 4 5 11 | 3bitri |  |-  ( [. A / x ]. E. y ph <-> E. y [. A / x ]. ph ) |