Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcalfi.1 | |- F/_ y A |
|
| sbcalfi.2 | |- ( [. A / x ]. ph <-> ps ) |
||
| Assertion | sbcalfi | |- ( [. A / x ]. A. y ph <-> A. y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcalfi.1 | |- F/_ y A |
|
| 2 | sbcalfi.2 | |- ( [. A / x ]. ph <-> ps ) |
|
| 3 | 1 | sbcalf | |- ( [. A / x ]. A. y ph <-> A. y [. A / x ]. ph ) |
| 4 | 2 | albii | |- ( A. y [. A / x ]. ph <-> A. y ps ) |
| 5 | 3 4 | bitri | |- ( [. A / x ]. A. y ph <-> A. y ps ) |