Metamath Proof Explorer


Theorem sbcalfi

Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses sbcalfi.1
|- F/_ y A
sbcalfi.2
|- ( [. A / x ]. ph <-> ps )
Assertion sbcalfi
|- ( [. A / x ]. A. y ph <-> A. y ps )

Proof

Step Hyp Ref Expression
1 sbcalfi.1
 |-  F/_ y A
2 sbcalfi.2
 |-  ( [. A / x ]. ph <-> ps )
3 1 sbcalf
 |-  ( [. A / x ]. A. y ph <-> A. y [. A / x ]. ph )
4 2 albii
 |-  ( A. y [. A / x ]. ph <-> A. y ps )
5 3 4 bitri
 |-  ( [. A / x ]. A. y ph <-> A. y ps )