Metamath Proof Explorer


Theorem sbcexfi

Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses sbcexfi.1
|- F/_ y A
sbcexfi.2
|- ( [. A / x ]. ph <-> ps )
Assertion sbcexfi
|- ( [. A / x ]. E. y ph <-> E. y ps )

Proof

Step Hyp Ref Expression
1 sbcexfi.1
 |-  F/_ y A
2 sbcexfi.2
 |-  ( [. A / x ]. ph <-> ps )
3 1 sbcexf
 |-  ( [. A / x ]. E. y ph <-> E. y [. A / x ]. ph )
4 2 exbii
 |-  ( E. y [. A / x ]. ph <-> E. y ps )
5 3 4 bitri
 |-  ( [. A / x ]. E. y ph <-> E. y ps )