Metamath Proof Explorer


Theorem sbcexfi

Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses sbcexfi.1 𝑦 𝐴
sbcexfi.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
Assertion sbcexfi ( [ 𝐴 / 𝑥 ]𝑦 𝜑 ↔ ∃ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 sbcexfi.1 𝑦 𝐴
2 sbcexfi.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
3 1 sbcexf ( [ 𝐴 / 𝑥 ]𝑦 𝜑 ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 )
4 2 exbii ( ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑦 𝜓 )
5 3 4 bitri ( [ 𝐴 / 𝑥 ]𝑦 𝜑 ↔ ∃ 𝑦 𝜓 )