Metamath Proof Explorer


Theorem sbcalfi

Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses sbcalfi.1 𝑦 𝐴
sbcalfi.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
Assertion sbcalfi ( [ 𝐴 / 𝑥 ]𝑦 𝜑 ↔ ∀ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 sbcalfi.1 𝑦 𝐴
2 sbcalfi.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
3 1 sbcalf ( [ 𝐴 / 𝑥 ]𝑦 𝜑 ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 )
4 2 albii ( ∀ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 𝜓 )
5 3 4 bitri ( [ 𝐴 / 𝑥 ]𝑦 𝜑 ↔ ∀ 𝑦 𝜓 )